
Help on class str: (Assume S is a string)

S.capitalize() -> str
 Return a capitalized version of S, i.e. make the first character
 have upper case and the rest lower case.

S.casefold() -> str
 Return a version of S suitable for caseless comparisons.

S.center(width[, fillchar]) -> str
 Return S centered in a string of length width. Padding is
 done using the specified fill character (default is a space)

S.count(sub[, start[, end]]) -> int
 Return the number of non-overlapping occurrences of substring
 sub in string S[start:end]. Optional arguments start and end are
 interpreted as in slice notation.

S.endswith(suffix[, start[, end]]) -> bool
 Return True if S ends with the specified suffix, False otherwise.
 With optional start, test S beginning at that position.
 With optional end, stop comparing S at that position.
 suffix can also be a tuple of strings to try.

S.expandtabs(tabsize=8) -> str
 Return a copy of S where all tab characters are expanded using
 spaces. If tabsize is not given, a tab size of 8 characters is assumed.

S.find(sub[, start[, end]]) -> int
 Return the lowest index in S where substring sub is found,
 such that sub is contained within S[start:end]. Optional
 arguments start and end are interpreted as in slice notation.
 Return -1 on failure.

S.format(*args, **kwargs) -> str
 Return a formatted version of S, using substitutions from args and
 kwargs. The substitutions are identified by braces ('{' and '}').

S.index(sub[, start[, end]]) -> int
 Like S.find() but raise ValueError when the substring is not found.

S.isalnum() -> bool
 Return True if all characters in S are alphanumeric
 and there is at least one character in S, False otherwise.

S.isalpha() -> bool
 Return True if all characters in S are alphabetic
 and there is at least one character in S, False otherwise.

S.isdecimal() -> bool
 Return True if there are only decimal characters in S,
 False otherwise.

S.isdigit() -> bool
 Return True if all characters in S are digits
 and there is at least one character in S, False otherwise.

S.islower() -> bool
 Return True if all cased characters in S are lowercase and there is
 at least one cased character in S, False otherwise.

S.isnumeric() -> bool
 Return True if there are only numeric characters in S,
 False otherwise.

S.isprintable() -> bool
 Return True if all characters in S are considered
 printable in repr() or S is empty, False otherwise.

S.isspace() -> bool
 Return True if all characters in S are whitespace
 and there is at least one character in S, False otherwise.

S.istitle() -> bool
 Return True if S is a titlecased string and there is at least one
 character in S, i.e. upper- and titlecase characters may only
 follow uncased characters and lowercase characters only cased
 ones.
 Return False otherwise.

S.isupper() -> bool
 Return True if all cased characters in S are uppercase and there is
 at least one cased character in S, False otherwise.

S.join(iterable) -> str
 Return a string which is the concatenation of the strings in the
 iterable. The separator between elements is S.

S.ljust(width[, fillchar]) -> str
 Return S left-justified in a Unicode string of length width. Padding is
 done using the specified fill character (default is a space).

S.lower() -> str
 Return a copy of the string S converted to lowercase.

S.lstrip([chars]) -> str
 Return a copy of the string S with leading whitespace removed.
 If chars is given and not None, remove characters in chars instead.

S.partition(sep) -> (head, sep, tail)
 Search for the separator sep in S, and return the part before it,
 the separator itself, and the part after it. If the separator is not
 found, return S and two empty strings.

S.replace(old, new[, count]) -> str
 Return a copy of S with all occurrences of substring
 old replaced by new. If the optional argument count is
 given, only the first count occurrences are replaced.

S.rfind(sub[, start[, end]]) -> int
 Return the highest index in S where substring sub is found,
 such that sub is contained within S[start:end]. Optional
 arguments start and end are interpreted as in slice notation.
 Return -1 on failure.

S.rindex(sub[, start[, end]]) -> int
 Like S.rfind() but raise ValueError when the substring is not found.

S.rjust(width[, fillchar]) -> str
 Return S right-justified in a string of length width. Padding is
 done using the specified fill character (default is a space).

S.rpartition(sep) -> (head, sep, tail)
 Search for the separator sep in S, starting at the end of S, and
 return the part before it, the separator itself, and the part after it.
 If the separator is not found, return two empty strings and S.

Help on class str continued: (Assume S is a string)

S.rsplit(sep=None, maxsplit=-1) -> list of strings
 Return a list of the words in S, using sep as the
 delimiter string, starting at the end of the string and
 working to the front. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified, any whitespace string
 is a separator.

S.rstrip([chars]) -> str
 Return a copy of the string S with trailing whitespace removed.
 If chars is given and not None, remove characters in chars instead.

S.split(sep=None, maxsplit=-1) -> list of strings
 Return a list of the words in S, using sep as the
 delimiter string. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified or is None, any
 whitespace string is a separator and empty strings are
 removed from the result.

S.splitlines([keepends]) -> list of strings
 Return a list of the lines in S, breaking at line boundaries.
 Line breaks are not included in the resulting list unless keepends
 is given and true.

S.startswith(prefix[, start[, end]]) -> bool
 Return True if S starts with the specified prefix, False otherwise.
 With optional start, test S beginning at that position.
 With optional end, stop comparing S at that position.
 prefix can also be a tuple of strings to try.

S.strip([chars]) -> str
 Return a copy of the string S with leading and trailing
 whitespace removed.
 If chars is given and not None, remove characters in chars instead.

S.swapcase() -> str
 Return a copy of S with uppercase characters converted to
 lowercase and vice versa.

S.title() -> str
 Return a titlecased version of S, i.e. words start with title case
 characters, all remaining cased characters have lower case.

S.upper() -> str
 Return a copy of S converted to uppercase.

S.zfill(width) -> str
 Pad a numeric string S with zeros on the left, to fill a field
 of the specified width. The string S is never truncated.

--

Writing textfiles:
 open(filename,'w') -> file
 Returns a file for writing
 If the file already exists, it is overwritten.

 F.write(string) -> integer
 Writes the string to the file.
 Returns the number of characters written.

Other Important String Functionality:

chr(integer) -> str
 Returns a one-character string with ASCII code integer.
 integer must be in the range [0..255]

len(str) -> integer
 Returns the number of characters in the string.

ord(str) -> integer
 Returns the ASCII value of a one-character string.
 str must be a string of a single character.

str(object) -> str
 Converts an object (like a number) into a string.

Accessing portions of a string can be done with slicers:
 Given a string S,

 S[n] will return the (n+1)st character of the string.
 S[n:p] will return the substring starting at the (n+1)st character

(character S[n]) and ending at the pth character (character
S[p–1]). Note: p must be greater than n.

 S[n:] will return the substring starting at the (n+1)st character
(character S[n]) and going to the end of the string.

 S[:p] will return the substring starting at the beginning of the
string and ending at the pth character (character S[p–1]).

 S[n:p:q] will return the substring starting at the (n+1)st
character (character S[n]) and ending at the pth character
(character S[p–1]), counting every qth character. Note: p must
be greater than n, unless q is negative, in which case, the
string will be traced backwards.

 Note that if n and p are negative, the characters will count
from the end, where the last character is S[–1], the second-to-
last character is S[-2], etc.

--

Reading textfiles:
 open(filename) or open(filename,'r') -> file
 Returns a file for reading

 F.read() -> str
 Returns the entire file as a string.

 F.readline() -> str
 Returns a line from the text file, including the terminating
 newline character.
 Returns an empty string if the end of file has been reached.

 F.readlines() -> list of strings
 Returns a list of strings, where each item in the list is one line
 from the file.

